If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+27x=00
a = 18; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·18·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*18}=\frac{-54}{36} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*18}=\frac{0}{36} =0 $
| 437=(21+x)(21-x) | | (2x+3)(3x-4)-3=0 | | 7x-2(x-9)=2(x-4)+9 | | (n+10)*4=34 | | 14+5=-5x-6(-3x+15+5 | | 6(5a-7)=-29+3a | | 4(3x-4)=-4 | | ^-4w+5/3=-13 | | 6x+2=2x-15 | | 5(5a+7)=-65 | | (B+2)(4b+3)=0 | | 3b+8b=17 | | F(x)=-9x-6+x(2x-5) | | 10x-7=0.777 | | 13-42=3(x-3)-8 | | w-6.41=9.7 | | 49=7/3y | | 9x+4=−95 | | -28=7n+7(4+7n) | | -2(1+3n)=-n-7 | | 64^x+1=16^2x-3 | | 28+8k=-2(3k+7) | | 11x2–4x=1 | | 9^a+5=27^a-1 | | -172=6(7n+4)+7n | | (9b-4)-2(4b+1)=-5 | | 3(4+3n)=48 | | h-6.5=1.5 | | 7^3-y=7^2y+9 | | -6x^2+2x+60=40 | | -9(8d-2)=-19 | | 4+5n-6n=-3 |